431/Math. 22-23 / 32118

B.Sc. Semester-III Examination, 2022-23 MATHEMATICS [Programme]

Course ID: 32118 Course Code: SP/MTH/301/C-1C Course Title: Algebra

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

UNIT-I

1. Answer any **five** of the following questions:

$$2 \times 5 = 10$$

- a) Solve the equation $x^4 + x^2 2x + 6 = 0$, where 1+i is one root of the given equation.
- b) If *n* is a positive integer, prove that $\frac{1.3.7...(2^n-1)}{2.4.8 \cdot 2^n} < \frac{2^n}{2^{n+1}-1}.$
- c) Find the product of all the values of $(1+i)^{\frac{4}{5}}$.
- d) Give an example of an infinite set S and a mapping $F: S \rightarrow S$ such that F is surjective but not injective.

[Turn Over]

- e) Show that the relation ρ defined on \mathbb{R} by the rule " $x\rho y$ iff x-y is irrational" is not an equivalence relation.
- f) Let $f: A \to B$ and $g: B \to C$ be two invertible functions. Then show that $g \circ f$ is invertible.
- g) Determine the rank of the matrix $A^3 + A^2 + A$, where

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 3 & 0 \\ 6 & 2 & 3 \end{bmatrix}.$$

h) Prove that $n^2 - 2$ is not divisible by $4, n \in \mathbb{Z}$.

UNIT-II

2. Answer any **four** of the following questions:

$$5 \times 4 = 20$$

a) Use De Moiver's theorem to prove that

$$tan 5\theta = \frac{5 tan \theta - 10 tan^3 \theta + tan^5 \theta}{1 - 10 tan^2 \theta + 5 tan^4 \theta}.$$

- b) Solve the equation : $x^4 + x^3 2x^2 + 4x 24 = 0$.
- c) Suppose A is a 2×2 real matrix with trace 5 and determinant 6. Find the eigenvalues of the matrix $B = A^2 2A + I_2$.

- d) Find a linear operator T on \mathbb{R}^3 such that $Ker\ T$ is the subspace $U = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ of \mathbb{R}^3 .
- e) i) Prove that the rank of a real skew-symmetric matrix cannot be 1.
 - ii) If gcd(m, n)=1, prove that gcd(mn, m+n)=1, where m and n are positive integers. 3+2
- f) For what values of *k* the following system of equations has a non-trivial solution? Solve in any one case.

$$x + 2y + 3z = kx$$
; $2x + y + 3z = ky$; $2x + 3y + z = kz$

UNIT-III

3. Answer any **one** of the following questions:

$$10 \times 1 = 10$$

- a) i) Prove that two eigenvectors of a square matrix A over the field \mathbb{R} corresponding to two distinct eigen values of A are linearly independent.
 - ii) Find the sum of 99th powers of the roots of the equation $x^7 1 = 0$.

- iii) Find the least positive residue of 3^{36} (mod 77). 4+3+3=10
- b) i) Show that $S = \{(2, -5, 3)\}$ is not a subspace of $V_3(\mathbb{R})$ generated by the vectors (1, -3, 2), (2, -4, 1), (1, -5, 7).
 - ii) Show that the matrix $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$ is not diagonalizable.
 - iii) Solve the equation:

$$x^{6} - x^{5} + x^{4} - 2x^{3} + x^{2} - x + 1 = 0.$$

3+3+4=10
